Misc,

Geometry and Topology in Relativistic Cosmology

.
(2007)
DOI: https://doi.org/10.48550/arXiv.0704.3374

Abstract

General relativity does not allow one to specify the topology of space, leaving the possibility that space is multiply rather than simply connected. We review the main mathematical properties of multiply connected spaces, and the different tools to classify them and to analyse their properties. Following their mathematical classification, we describe the different possible muticonnected spaces which may be used to construct Friedmann-Lemaitre universe models. Observational tests concern the distribution of images of discrete cosmic objects or more global effects, mainly those concerning the Cosmic Microwave Background. According to the 2003-2006 WMAP data releases, various deviations from the flat infinite universe model predictions hint at a possible non-trivial topology for the shape of space. In particular, a finite universe with the topology of the Poincaré dodecahedral spherical space fits remarkably well the data and is a good candidate for explaining both the local curvature of space and the large angle anomalies in the temperature power spectrum. Such a model of a small universe, whose volume would represent only about 80% the volume of the observable universe, offers an observational signature in the form of a predictable topological lens effect on one hand, and rises new issues on the physics of the early universe on the other hand.

Tags

Users

  • @tabularii

Comments and Reviews