@ijfls

ESTIMATION AND COMPENSATION OF INTER CARRIER INTERFERENCE IN WIMAX PHYSICAL LAYER UNDER VARIOUS CHANNEL MODELS

, and . International Journal of Next-Generation Networks (IJNGN), 4 (3): 73 - 87 (September 2012)

Abstract

iMAX is Wireless Interoperability for Microwave Access has emerged as a promising solution fortransmission of higher data rates for fixed and mobile applications. IEEE 802.16d and e are the standards proposed by WiMAX group for fixed and mobile. As the wireless channel have so many limitation Such as Multipath, Doppler spread, Delay spread and Line Of Sight (LOS)/Non Line Of Sight (NLOS) components. To attain higher data rates the Multi Carrier System with Multiple Input and Multiple Output (MIMO) is incorporated in the WiMAX. The Orthogonal Frequency Division Multiplexing (OFDM) is a multi carrier technique used with the WiMAX systems. In OFDM the available spectrum is split into numerous narrow band channels of dissimilar frequencies to achieve high data rate in a multi path fading environment. And all these sub carriers are considered to be orthogonal to each other. As the number of sub carriers is increased there is no guarantee of sustained orthogonality, i.e. at some point the carriers are not independent to each other, and hence where the orthogonality can be loosed which leads to interference and also owing to the synchronization between transmitter and receiver local oscillator, it causes interference known as Inter Carrier Interference (ICI). The systems uses MIMO-OFDM will suffer with the effects of ICI and Carrier Frequency Offset (CFO) “ε”. However these affect the power leakage in the midst of sub carriers, consequently degrading the system performance. In this paper a new approach is proposed in order to reduce the ICI caused in WiMAX and improve the system performance. In this scheme at the transmitter side the modulated data and a few predefined pilot symbols are mapped onto the non neighboring sub carriers with weighting coefficients of +1 and -1. With the aid of pilot symbols the frequency offset is exactly estimated by using Maximum Likelihood Estimation (MLE) and hence can be minimized. At demodulation stage the received signals are linearly combined along with their weighted coefficients and pilot symbols, called as Pilot Aided Self Cancellation Method (PASCS). And also to realize the various wireless environments the simulations are carried out on Stanford University Interim (SUI) channels. The simulation results shows that by incorporating this method into WiMAX systems it performs better when the Line Of Sight (LOS) component is present in the transmission and also it improves the Bit Error Rate (BER) and Carrier to Interference Ratio (CIR). The CIR can be improved 20 dB. In this paper the effectiveness of PASCS scheme is compared with the Self Cancellation Method (SCM). It provides accurate estimation of frequency offset and when residual CFO is less significant the ICI can be diminished successfully.

Links and resources

Tags

community

  • @ijfls
  • @dblp
@ijfls's tags highlighted