Abstract

This paper presents an experimental and theoretical investigation of nonlinear water wave propagation over a sloping bed. Firstly, a series of monochromatic wave laboratory experiments were performed in order to measure the particle trajectories, evolution of wave profile, and wave phase velocity as wave propagates on a sloping bottom. The particle trajectories are quantified by means of images from a high speed camera, whereas the evolution of wave profile and variation of wave phase velocity are measured by a wave gauge array. Subsequently, the free-surface elevation, phase velocity, particle trajectories, and breaking wave height are estimated using a Lagrangian nonlinear wave transformation model. Model predictions show a reasonable agreement with experimental data. © 2013 Elsevier Ltd.

Links and resources

Tags