@bobsica

Interhemispheric comparison of mesospheric ice layers from the LIMA model

, and . Journal of Atmospheric and Solar-Terrestrial Physics, 69 (17-18): 2292-2308 (2007)Cited References: BAILEY SM, 2005, J GEOPHYS RES, V110 BAILEY SM, 2007, J ATMOS SOL-TERR PHY, V69, P1407, DOI 10.1016/j.jastp.2007.02.008 BALSLEY BB, 1993, GEOPHYS RES LETT, V20, P1983 BECKER E, 2003, J ATMOS SCI, V60, P103 BECKER E, 2004, GEOPHYS RES LETT, V31 BERGER U, 2003, J GEOPHYS RES, V107 BERGER U, 2006, GEOPHYS RES LETT, V33 BERGER U, 2007, J GEOPHYS RES, V112 BERGER U, 2007, UNPUB J ATMOSPHERIC BREMER J, 2006, J ATMOS SOL-TERR PHY, V68, P1940, DOI 10.1016/j.jastp.2006.02.012 CARBARY JF, 2001, GEOPHYS RES LETT, V28, P725 CHU X, 2004, GEOPHYS RES LETT, V31 CHU X, 2006, J GEOPHYS RESDOI 10.1029/2006JD007086 CZECHOWSKY P, 1979, GEOPHYS RES LETT, V6, P459 DELAND MT, 2006, J ATMOS SOL-TERR PHY, V68, P9, DOI 10.1016/j.jastp.2005.08.003 DONAHUE TM, 1972, J ATMOS SCI, V29, P1205 ECKLUND WL, 1981, J GEOPHYS RES, V86, P7775 FIEDLER J, 2003, J GEOPHYS RES, V108 FIEDLER J, 2005, ANN GEOPHYS-GERMANY, V23, P1175 GERDING M, 2007, J GEOPHYS RES, V112 GOLDBERG RA, 2004, GEOPHYS RES LETT, V31 HANSEN G, 1989, GEOPHYS RES LETT, V16, P1445 HERVIG M, 2006, J ATMOS SOL-TERR PHY, V68, P30, DOI 10.1016/j.jastp.2005.08.010 HOFFNER J, 2003, ATMOS CHEM PHYS, V3, P1101 HUNTEN DM, 1980, J ATMOS SCI, V37, P1342 KARLSSON B, 2007, GEOPHYS RES LETT, V34 KUTEPOV AA, 2006, GEOPHYS RES LETT LATTECK R, 2007, GEOPHYS RES LETT, V34 LESLIE R, 1885, NATURE, V32, P245 LUBKEN FJ, 1996, J GEOPHYS RES-ATMOS, V101, P9489 LUBKEN FJ, 1997, J GEOPHYS RES-ATMOS, V102, P13441 LUBKEN FJ, 1999, J GEOPHYS RES-ATMOS, V104, P9135 LUBKEN FJ, 2004, J GEOPHYS RES, V109 LUBKEN FJ, 2004, J GEOPHYS RES, V109 LUBKEN FJ, 2007, ADV SPACE RES, V40, P794, DOI 10.1016/J.ASR.2007.01.014 MAUERSBERGER K, 2003, GEOPHYS RES LETT, V30 MORRIS RJ, 2004, GEOPHYS RES LETT, V31 MULLEMANN A, 2005, ADV SPACE RES, V35, P1890, DOI 10.1016/J.ASR.2004.11.014 MURPHY DM, 2005, Q J ROY METEOR SOC B, V131, P1539, DOI 10.1256/qj.04.94 OLIVERO JJ, 1986, J ATMOS SCI, V43, P1263 PETELINA SV, 2006, J ATMOS SOL-TERR PHY, V68, P42, DOI 10.1016/j.jastp.2005.08.004 RAPP M, 2003, J GEOPHYS RES-ATMOS, V108, ARTN 8441 RAPP M, 2004, ATMOS CHEM PHYS, V4, P2601 RAPP M, 2006, J ATMOS SOL-TERR PHY, V68, P715, DOI 10.1016/j.jastp.2005.10.015 SEELE C, 1999, GEOPHYS RES LETT, V26, P1517 SISKIND DE, 2003, J GEOPHYS RES, V108 SISKIND DE, 2005, J ATMOS SOL-TERR PHY, V67, P501, DOI 10.1016/j.jastp.2004.11.007 SONNEMANN GR, 2005, J ATMOS SOL-TERR PHY, V67, P177, DOI 10.1016/j.jastp.2004.07.026 STEVENS MH, 2005, GEOPHYS RES LETT, V32 THAYER JP, 1995, GEOPHYS RES LETT, V22, P2961 THOMAS GE, 1984, J ATMOS TERR PHYS, V46, P819 THOMAS GE, 1989, J GEOPHYS RES-ATMOSP, V94, P14673 THOMAS GE, 1991, REV GEOPHYS, V29, P553 VONSAVIGNY C, 2007, GEOPHYS RES LETT, V34 VONZAHN U, 2003, J GEOPHYS RES, V108 WOODMAN RF, 1999, J GEOPHYS RES-SPACE, V104, P22577 WROTNY JE, 2006, J ATMOS SOL-TERR PHY, V68, P1352, DOI 10.1016/j.jastp.2006.05.014 ZECHA M, 2003, J GEOPHYS RES, V108 Luebken, F. -J. Berger, U..

Abstract

The new LIMA/ice model is used to study interhemispheric temperature differences at the summer upper mesosphere and their impact on the morphology of ice particle related phenomena such as noctilucent clouds (NLC), polar mesosphere clouds (PMC), and polar mesosphere summer echoes (PMSE). LIMA/ice nicely reproduces the mean characteristics of observed ice layers, for example their variation with season, altitude, and latitude. The southern hemisphere (SH) is slightly warmer compared to the NH but the difference is less than 3 K at NLC/PMC/PMSE altitudes and poleward of 70 degrees N/S. This is consistent with in situ temperature measurements by falling spheres performed at 69 degrees N and 68 degrees S. Earth's eccentricity leads to a SH mesosphere being warmer compared to the NH by similar to 2-3 K up to approximately 85 km and fairly independent of latitude. In general, NH/SH temperature differences in LIMA increase with decreasing latitude and reach similar to 10 K at 50 degrees. The latitudinal variation of NH/SH temperature differences is presumably caused by dynamical forcing and explains why PMSE are basically absent at midlatitudes in the SH whereas they are still rather common at similar colatitudes in the NH. The occurrence frequency and brightness of NLC and PMC are larger in the NH but the differences decrease with increasing latitude. Summer conditions in the SH terminate earlier compared to NH, leading to an earlier weakening and end of the ice layer season. The NLC altitude in the SH is slightly higher by 0.6-1 km, whereas the NLC altitudes itself depend on season in both hemispheres. Compared to other models LIMA/ice shows smaller interhemispheric temperature differences but still generates the observed NH/SH differences in ice layer characteristics. This emphasizes the importance of temperature controlling the existence and morphology of ice particles. Interhemispheric differences in NLC/PMC/PMSE characteristics deduced from LIMA/ice basically agree with observations from lidars, satellites, and radars. (c) 2007 Elsevier Ltd. All rights reserved.

Description

Leo's paper references II

Links and resources

Tags