Abstract

We introduce an integrated meshing and finite element method pipeline enabling black-box solution of partial differential equations in the volume enclosed by a boundary representation. We construct a hybrid hexahedral-dominant mesh, which contains a small number of star-shaped polyhedra, and build a set of high-order basis on its elements, combining triquadratic B-splines, triquadratic hexahedra (27 degrees of freedom), and harmonic elements. We demonstrate that our approach converges cubically under refinement, while requiring around 50% of the degrees of freedom than a similarly dense hexahedral mesh composed of triquadratic hexahedra. We validate our approach solving Poisson's equation on a large collection of models, which are automatically processed by our algorithm, only requiring the user to provide boundary conditions on their surface.

Description

[1804.03245] Poly-Spline Finite Element Method

Links and resources

Tags

community

  • @analyst
  • @dblp
@analyst's tags highlighted