Abstract

Island models in evolutionary computation solve problems by a careful interplay of independently running evolutionary algorithms on the island and an exchange of good solutions between the islands. In this work, we conduct rigorous run time analyses for such island models trying to simultaneously obtain good run times and low communication effort. We improve the existing upper bounds for the communication effort (i) by improving the run time bounds via a careful analysis, (ii) by setting the balance between individual computation and communication in a more appropriate manner, and (iii) by replacing the usual communicate-with-all-neighbors approach with randomized rumor spreading, where each island contacts a randomly chosen neighbor. This epidemic communication paradigm is known to lead to very fast and robust information dissemination in many applications. Our results concern islands running simple (1+1) evolutionary algorithms, we regard d-dimensional tori and complete graphs as communication topologies, and optimize the classic test functions OneMax and LeadingOnes.

Links and resources

Tags

community

  • @typo3tester
  • @dblp
@typo3tester's tags highlighted