Abstract

Quantized adiabatic transport can occur when a system is slowly modulated over time. In most realizations, however, the efficiency of such transport is reduced by unwanted dissipation, back-scattering, and nonadiabatic effects. In this paper, we realize a topological adiabatic pump in an electrical circuit network that supports remarkably stable and long-lasting pumping of a voltage signal. We further characterize the topology of our system by deducing the Chern number from the measured edge band structure. To achieve this, the experimental setup makes use of active circuit elements that act as time-variable voltage-controlled inductors.

Description

Phys. Rev. Research 6, 023010 (2024) - Realizing efficient topological temporal pumping in electrical circuits

Links and resources

Tags