@ijisme_beiesp

Low Temperature Preparation and Effect of Pr3+, La3+, Sm3+ and Gd3+ Substitution on Structural, Magnetic and Dielectric, Studies of Ni0.5Zn0.5Fe2O4 Ferrite Nanoparticles

, , and . International Journal of Innovative Science and Modern Engineering (IJISME), 3 (12): 1-6 (November 2015)

Abstract

Ni0.5Zn0.5Fe1.97R0.03O4 Nanoparticles; R= Pr, Sm, La and Gd, were synthesized using Chemical based Citrate Precursor method, annealed at low temperature 450oC for 2hr. Xray diffraction (XRD) tool was used for estimation of average particle size and phase analysis. The average particle size was found to be 25nm, 33nm, 31nm, 22nm and 13 nm respectively. Room temperature magnetic measurement was done by vibrating sample magnetometer (VSM). The magnetization values observed are 50.692 emu/g, 43.781 emu/g, 47.875 emu/g, 43.335 emu/g and 43.518 emu/g respectively. The dielectric properties for all the samples were investigated at room temperature as a function of frequency while impedance was measured as a function of temperature. Ni0.5Zn0.5Fe1.97Sm0.03O4 nanoparticles show a dielectric behavior appreciably different from Ni0.5Zn0.5Fe1.97Gd0.03O4 , Ni0.5Zn0.5Fe1.97Pr0.07O4 , and Ni0.5Zn0.5Fe1.97La0.03O4 nanoparticles.

Links and resources

Tags